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Abstract

Considering the effect of random perturbations on the chaotic system, a new adaptive tracking control is presented for a

large class of uncertain chaotic systems using the invariance principle of differential equations, where the bound of random

perturbations is not necessarily known in advance and it is estimated through an adaptive control process. It is

theoretically proved that this approach can make the perturbed chaotic system track any desired reference signal; in

addition, we can see that this method can apply to almost all uncertain chaotic systems and it is simpler and easier to

implement in practical application. In the end, we take the perturbed Lorenz system as an example to illustrate that the

proposed scheme is effective.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In the past decade or more, the investigation of chaos control and synchronization has undergone the
process of vigorous development due to the pioneering work of Ott, Grebogi and Yorke (OGY) [1]. Now, it
has been applied to various fields such as in physics, chemistry, biology, information science and secure
communication [2–9]. There are many strategies for controlling chaos, such as feedback control, impulsive
control, back-stepping design, adaptive control, and time-delay feedback control.

Among them, tracking is the most commonly discussed problem in the domain of chaos control. It can be
explained that, for random reference signal, a controller is needed to be designed in order to cause the output
of the chaotic system to follow the given reference signal asymptotically [10–17]. There are many references
about tracking control in the literature. For some concrete chaotic systems, Refs. [10–16] studied the problem
of tracking control. But it is a pity that all above chaotic systems’ parameters are taken as known constants,
and these methods can apply only to some special systems not a class of chaotic systems. In Ref. [17], adaptive
tracking control strategy was proposed to approach the desired bounded trajectories for a class of uncertain
chaotic systems with time-varying unknown parameters, but uncertain parameters in Ref. [17] are supposed to
be bounded and random perturbations are not taken into consideration. In real life, random perturbation or
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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noise exists inevitably in system, and even sometimes, we require certain disturbance to increase security in
communication because it can induce complicated dynamics of the original system, so in recent years some
people began to move the discussion to the chaotic system in the presence of random perturbations [18–20].

Motivated by all above works, in this paper, one more general method of tracking control, which is different
from the previous works, is given for a class of uncertain chaotic systems with random perturbations, where
the bound of random perturbations is not necessarily known in advance and it is estimated through an
adaptive control process. Compared to the predecessor’s method [10–17], our method can apply to almost all
chaotic systems such as Chen system, Rössler system, Chua’s system, Liu system and the adopted adaptive
technique is convenient to implement in practical application. Numerical simulations verify the effectiveness of
our method.

The organization of this paper is as follows: In Section 2, adaptive tracking control is theoretically
introduced for a class of chaotic systems with random perturbations by means of the invariance principle of
differential equations where random disturbances are taken into consideration in the design of controller.
In Section 3, Lorenz chaotic system as a concrete example is used to illustrate the validity of the
proposed method, and the results show that the perturbed Lorenz chaotic system can follow any desired
signal. Section 4 draws some conclusions.

2. A general method for controller design

Consider an n-dimension chaotic system with bounded disturbances

_x ¼ fðxÞ þ FðxÞ~hþ d, (1)

where xARn denotes the state vector, and ~h 2 Rmrepresents the uncertain parameter vector of the system, f(x)
is an n� 1 matrix and F(x) is an n�m matrix. d(t)ARn may come from exoteric perturbation or is the random
component added to the system for some purpose which assumed to satisfy bounded condition jjdðtÞjjp ~ko1
for all t, where ~k40 is not necessarily known previously. Let XCRn be a bounded closed set that contains the
whole attractor of Eq. (1).

When a controller uARn is added to the original system (1), we get

_x ¼ fðxÞ þ FðxÞ~hþ dþ u. (2)

Let h(t) be an arbitrary given reference signal with first derivative. Our aim is that, according to the design
of the controller, the output signal x(t) of system (2) follows the reference signal h(t) ultimately. That is

lim
t!1
jjeðtÞjj ¼ lim

t!1
jjxðtÞ � hðtÞjj ¼ 0, (3)

where || � || is the Euclidean norm.
Due to the randomicity of reference signal, it is easy to find that controlling of the equilibrium of chaotic

system belongs to this class of problem if we take the equilibrium as a reference signal, and the
synchronization phenomenon between chaotic systems also belongs to this class of problem if we consider the
reference signal as being the output of one of the chaotic systems.

Now, Theorem 1 is given based on the above conditions in order to achieve the goal of Eq. (3).

Theorem 1. If the controller is selected such that

u ¼ _h� le� fðxÞ � FðxÞĥ� k̂e=jjejj, (4)

where l40 is a constant and ĥ 2 Rm is updated according to the following law:

_̂h ¼ ½FðxÞ�Te, (5)

and k̂ obeys the following differential equation:

_̂
k ¼ jjejj, (6)

then the signal x(t) of system (2) can track the reference signal h(t) ultimately.
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Proof. Let h ¼ ~h� ĥ; k ¼ ~k � k̂ and chose a Lyapunov function as

V ¼ 1
2
½eTeþ ð~h� ĥÞTð~h� ĥÞ þ ð ~k � k̂ÞTð ~k � k̂Þ�.

Thus, the time derivative of V is

_V ¼ _eTeþ ð~h� ĥÞTð� _̂hÞ þ ð ~k � k̂ÞTð�
_̂
kÞ

¼ ðfðxÞ þ FðxÞ~hþ dþ u� _hÞTeþ ð~h� ĥÞTð�½FðxÞ�TeÞ þ ð ~k � k̂ÞTð�jjejjÞ

pðfðxÞ þ FðxÞ~hþ u� _hÞTeþ jjdjjjjejj þ ð~h� ĥÞTð�½FðxÞ�TeÞ þ ð ~k � k̂ÞTð�jjejjÞ

pðfðxÞ þ FðxÞ~hþ u� _hÞTeþ ~kjjejj þ ð~h� ĥÞTð�½FðxÞ�TeÞ þ ð ~k � k̂ÞTð�jjejjÞ

¼ ðfðxÞ þ FðxÞ~hþ u� _hÞTeþ ð~h� ĥÞTð�½FðxÞ�TeÞ þ k̂jjejj

¼ ðfðxÞ þ FðxÞ~hþ _h� le� fðxÞ � FðxÞĥ� k̂e=jjejj � _hÞTeþ ð~h� ĥÞTð�½FðxÞ�TeÞ þ k̂jjejj

¼ ðFðxÞ~h� le� FðxÞĥ� k̂e=jjejjÞTe� ð~h� ĥÞT½FðxÞ�Teþ k̂jjejj

¼ � leTep0.

It is found that the set M ¼ fe ¼ 0; ~h� ĥ ¼ 0; ~k � k̂ ¼ 0g is the largest invariant set contained in
the set E ¼ {e ¼ 0ARn}. Consequently, according to the well-known invariance principle of
differential equations [21], the chaotic signal x(t) of system (2) will approach the reference signal h(t)
asymptotically. &

3. Numerical simulations

In this section, with the aid of appropriate controller, the perturbed Lorenz system will track any
given reference signal and corresponding numerical results are given to illustrate the validity of the proposed
approach.

The Lorenz chaotic system is described by

_x1

_x2

_x3

2
64

3
75 ¼

0

�x2 � x1x3

x1x2

2
64

3
75þ

x2 � x1 0 0

0 x1 0

0 0 �x3

2
64

3
75

~y1
~y2
~y3

2
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3
75, (7)

where

fðxÞ ¼

0

�x2 � x1x3

x1x2

2
64

3
75; FðxÞ ¼

x2 � x1 0 0

0 x1 0

0 0 �x3

2
64

3
75.

when the system parameters are taken as ~h ¼ ð~y1; ~y2; ~y3Þ
T
¼ ð10; 28; 8=3ÞT, this system exhibits chaotic

behavior, which can be seen in Fig. 1.
For the perturbed Lorenz system, it can be written as
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2
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x1x2

2
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2
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3
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~y2
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2
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3
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d1

d2

d3

2
64

3
75, (8)

where d1, d2 and d3 are all taken to be uniformly distributed random noise in the range [�1.0,1.0] in numerical
simulations, which means that the strength of perturbation is 1.0. Of course, d1, d2 and d3 can be completely
different, but the derived result is identical to the above ones.

The organization of this part is as follows: Firstly, according to the appropriate controller, the uncertain
Lorenz system with disturbances will approach given desired signal h ¼ ðsin 2t; cos t; 0ÞT. Secondly, the
perturbed Lorenz chaotic system will track one of its own equilibriums h ¼ (0,0,0)T, that is to say, it will be
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Fig. 1. The phase portrait of Lorenz system.
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controlled to the equilibrium. Thirdly, based on Theorem 1, we try to make the perturbed Lorenz system close
to the reference signal that is the output of identical Lorenz chaotic system. Lastly, synchronization of
two different chaotic systems is discussed by means of our method. All these results show that our method
is effective.
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3.1. Tracking desired signal h ¼ (sin 2t,cos t,0)T

For the given reference signal h ¼ (sin 2t,cos t,0)T, the controller is derived with the help of Theorem 1. So it
can be expressed as

u ¼ _h� le� fðxÞ � FðxÞĥ� k̂e=jjejj

¼

ðx1 � x2Þŷ1 þ 2 cos 2t� lðx1 � sin 2tÞ �
k̂

jjejj
ðx1 � sin 2tÞ

x2 þ x1x3 � x1ŷ2 � sin t� lðx2 � cos tÞ �
k̂

jjejj
ðx2 � cos tÞ

�x1x2 þ x3ŷ3 � lx3 �
k̂x3

jjejj

0
BBBBBBBBB@

1
CCCCCCCCCA

. (9)

From Ref. [19], several approaches are introduced in order to eliminate the chattering phenomenon, which
is as a result of the coming of k̂e=jjejj in the controller u, so in this simulation, we employ a continuous
controller that is in the following:

u ¼ _h� le� fðxÞ � FðxÞĥ� k̂e=jjejj þ 0:0001

¼

ðx1 � x2Þŷ1 þ 2 cos 2t� lðx1 � sin 2tÞ �
k̂

jjejj þ 0:0001
ðx1 � sin 2tÞ

x2 þ x1x3 � x1ŷ2 � sin t� lðx2 � cos tÞ �
k̂

jjejj þ 0:0001
ðx2 � cos tÞ

�x1x2 þ x3ŷ3 � lx3 �
k̂x3

jjejj þ 0:0001

0
BBBBBBBBB@

1
CCCCCCCCCA

, (10)

and from Eq. (5), we derived the following:

_̂h ¼ ½FðxÞ�Te ¼

ðx2 � x1Þðx1 � sin 2tÞ

x1ðx2 � cos tÞ

�x2
3

0
B@

1
CA. (11)

The unknown parameter vector ~h ¼ ð10; 28; 8=3ÞT and the initial conditions xð0Þ ¼ ð�1; 1; 2ÞT; ĥð0Þ ¼
ð0; 0; 0ÞT; k̂ð0Þ ¼ 1:0 are chosen in this simulation; furthermore, constant l is fixed at 1.0 in this paper. The
numerical results are shown in Fig. 2 that tells us time evolution of errors between the perturbed chaotic signal
and reference signal. From Fig. 2(a)–(c), we can see that, with the passage of time, the errors are close to zero
asymptotically; therefore, Eq. (3) is satisfied. This says that the perturbed Lorenz chaotic system follows the
given reference signals successfully though its parameters are uncertain.
3.2. Tracking the equilibrium of its own system h ¼ (0,0,0)T

In order to obtain the perturbed Lorenz chaotic system with disturbances close to the equilibrium
h ¼ (0,0,0)T, from Eqs. (4) and (5), the controller is given in the following as a result of considering the
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Fig. 2. Time evolution of error signals e ¼ x–h.
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chattering phenomenon:

u ¼ _h� le� fðxÞ � FðxÞĥ�
k̂e

jjejj þ 0:0001

¼

ðx1 � x2Þŷ1 � lx1 �
k̂x1

jjejj þ 0:0001

x2 þ x1x3 � x1ŷ2 � lx2 �
k̂x2

jjejj þ 0:0001

�x1x2 þ x3ŷ3 � lx3 �
k̂x3

jjejj þ 0:0001

0
BBBBBBBBB@

1
CCCCCCCCCA

, (12)

and

_̂h ¼ ½FðxÞ�Te ¼

x1ðx2 � x1Þ

x1x2

�x2
3

0
B@

1
CA. (13)

We select the unknown parameter vector ~h ¼ ð10; 28; 8=3ÞT and the initial conditions xð0Þ ¼

ð�1; 1; 3ÞT; ĥð0Þ ¼ ð0; 1; 0:5ÞT; k̂ð0Þ ¼ 1:0; Fig. 3 shows the numerical results and Fig. 3(a)–(c), give us time
evolution of errors that the perturbed Lorenz system tracks its own equilibrium. We can see that the errors
converge to zero ultimately as time goes on. Consequently, the conclusions are drawn that the perturbed
Lorenz chaotic system is controlled to its equilibrium. In fact, Lorenz system can be close to other
equilibriums of its own in a similar way.

3.3. Tracking Lorenz chaotic signal h ¼ (y1,y2,y3)T

Our aim is that the perturbed Lorenz chaotic system synchronizes with the signals that is the output of
Lorenz chaotic system by means of the method of tracking control.

The reference signals h ¼ (y1,y2,y3)
T satisfy

_y1 ¼ aðy2 � y1Þ,

_y2 ¼ by1 � y2 � y1y3,

_y3 ¼ � cy3 þ y1y2. (14)
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Similar to (12), the controller is as follows:

u ¼ _h� le� fðxÞ � FðxÞĥ�
k̂e

jjejj þ 0:0001

¼

ðx1 � x2Þŷ1 þ aðy2 � y1Þ � lðx1 � y1Þ �
k̂ðx1 � y1Þ

jjejj þ 0:0001

x2 þ x1x3 � x1ŷ2 þ by1 � y2 � y1y3 � lðx2 � y2Þ �
k̂ðx2 � y2Þ

jjejj þ 0:0001

�x1x2 þ x3ŷ3 � cy3 þ y1y2 � lðx3 � y3Þ �
k̂ðx3 � y3Þ

jjejj þ 0:0001

0
BBBBBBBBB@

1
CCCCCCCCCA

, (15)

and

_̂h ¼ ½FðxÞ�Te ¼

ðx2 � x1Þðx1 � y1Þ

x1ðx2 � y2Þ

�x3ðx3 � y3Þ

0
B@

1
CA. (16)

It is seen that the parameter vector of system (14) is (a,b,c)T ¼ (10,28,8/3)T; thus, system (14) is chaotic.
Simultaneously, we select initial conditions y(0) ¼ (�0.5,1.0,�1.5)T, xð0Þ ¼ ð�1; 1; 3ÞT; ĥð0Þ ¼
ð0; 0; 1ÞT; k̂ð0Þ ¼ 1:0. The numerical results are shown in Fig. 4. From Fig. 4(a)–(c), we can see that the
errors are indeed close to zero which means synchronization between chaotic systems can be achieved finally
based on the method of tracking control in this paper.

3.4. Tracking another different chaotic signal h ¼ (z1,z2,z3)T

In this part, chaos synchronization of two different dynamical systems will be discussed with the aid of the
tracking control. Now, we take the output of dynamical system in Ref. [22] as reference signals h ¼ (z1,z2,z3)

T,
it can be described as

_z1 ¼ az1 � z2z3,

_z2 ¼ � bz2 þ z1z3,

_z3 ¼ � gz3 þ z1z2, (17)

and system (17) becomes chaotic in the presence of ða;b; gÞT ¼ ð0:4; 12; 5:0ÞT.
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Fig. 5. Time evolution of error signals e ¼ x–h.
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Considering the chattering of phenomenon, the controller becomes

u ¼ _h� le� fðxÞ � FðxÞĥ�
k̂e

jjejj þ 0:0001

¼

ðx1 � x2Þŷ1 þ az1 � z2z3 � lðx1 � z1Þ �
k̂ðx1 � z1Þ

jjejj þ 0:0001

x2 þ x1x3 � x1ŷ2 � bz2 þ z1z3 � lðx2 � z2Þ �
k̂ðx2 � z2Þ

jjejj þ 0:0001

�x1x2 þ x3ŷ3 � gz3 þ z1z2 � lðx3 � z3Þ �
k̂ðx3 � z3Þ

jjejj þ 0:0001

0
BBBBBBBBB@

1
CCCCCCCCCA

, (18)
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and

_̂h ¼ ½FðxÞ�Te ¼

ðx2 � x1Þðx1 � z1Þ

x1ðx2 � z2Þ

�x3ðx3 � z3Þ

0
B@

1
CA. (19)

The initial values of Eqs. (8), (17) and (19) are given as follows: x(0) ¼ (�1,1,3)T, z(0) ¼ (�1,11,3)T,
ĥð0Þ ¼ ð0; 0; 1ÞT; what is more, we take k̂ð0Þ ¼ 0. Fig. 5 shows us numerical results for verifying the validity of
this proposed method; Fig. 5(a)–(c) illustrates time evolution of errors (x–z), so we can see that the perturbed
chaotic signals of system (8) track the reference signals (17) quickly. Thus different chaotic dynamical systems
achieve synchronization as time goes on.

4. Conclusions

In this paper, adaptive tracking control is given for a type of uncertain chaotic dynamical systems with
random perturbations based on the invariance principle of differential equations where random disturbances
are taken into consideration in the design of controller. This method makes the chaotic system track any
desired reference signal. In the end, we take the perturbed Lorenz system as an example to illustrate the
validity of this method.

It should be noted that this new scheme is applicable to a fairly large class of chaotic systems such as Chen
system, Rössler system, Chua’s system, and Liu system when the parameters of these systems are uncertain.
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